Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.418
Filtrar
1.
Nucleic Acids Res ; 52(7): 3924-3937, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38421610

RESUMO

RNA ligases are important enzymes in molecular biology and are highly useful for the manipulation and analysis of nucleic acids, including adapter ligation in next-generation sequencing of microRNAs. Thermophilic RNA ligases belonging to the RNA ligase 3 family are gaining attention for their use in molecular biology, for example a thermophilic RNA ligase from Methanobacterium thermoautotrophicum is commercially available for the adenylation of nucleic acids. Here we extensively characterise a newly identified RNA ligase from the thermophilic archaeon Palaeococcus pacificus (PpaRnl). PpaRnl exhibited significant substrate adenylation activity but low ligation activity across a range of oligonucleotide substrates. Mutation of Lys92 in motif I to alanine, resulted in an enzyme that lacked adenylation activity, but demonstrated improved ligation activity with pre-adenylated substrates (ATP-independent ligation). Subsequent structural characterisation revealed that in this mutant enzyme Lys238 was found in two alternate positions for coordination of the phosphate tail of ATP. In contrast mutation of Lys238 in motif V to glycine via structure-guided engineering enhanced ATP-dependent ligation activity via an arginine residue compensating for the absence of Lys238. Ligation activity for both mutations was higher than the wild-type, with activity observed across a range of oligonucleotide substrates with varying sequence and secondary structure.


Assuntos
RNA Ligase (ATP) , RNA Ligase (ATP)/metabolismo , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/química , Especificidade por Substrato , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Planococáceas/enzimologia , Planococáceas/genética , Engenharia de Proteínas , Mutação , Modelos Moleculares , Trifosfato de Adenosina/metabolismo , Oligonucleotídeos/metabolismo , Oligonucleotídeos/genética
2.
Science ; 382(6674): eadd7795, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033054

RESUMO

Photolyases, a ubiquitous class of flavoproteins, use blue light to repair DNA photolesions. In this work, we determined the structural mechanism of the photolyase-catalyzed repair of a cyclobutane pyrimidine dimer (CPD) lesion using time-resolved serial femtosecond crystallography (TR-SFX). We obtained 18 snapshots that show time-dependent changes in four reaction loci. We used these results to create a movie that depicts the repair of CPD lesions in the picosecond-to-nanosecond range, followed by the recovery of the enzymatic moieties involved in catalysis, completing the formation of the fully reduced enzyme-product complex at 500 nanoseconds. Finally, back-flip intermediates of the thymine bases to reanneal the DNA were captured at 25 to 200 microseconds. Our data cover the complete molecular mechanism of a photolyase and, importantly, its chemistry and enzymatic catalysis at work across a wide timescale and at atomic resolution.


Assuntos
Proteínas Arqueais , Reparo do DNA , Desoxirribodipirimidina Fotoliase , Methanosarcina , Dímeros de Pirimidina , Proteínas Arqueais/química , Catálise , Cristalografia/métodos , Desoxirribodipirimidina Fotoliase/química , DNA/química , DNA/efeitos da radiação , Methanosarcina/enzimologia , Conformação Proteica , Dímeros de Pirimidina/química , Raios Ultravioleta
3.
Biol Chem ; 404(11-12): 1085-1100, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37709673

RESUMO

Posttranscriptional processes in Bacteria include the association of small regulatory RNAs (sRNA) with a target mRNA. The sRNA/mRNA annealing process is often mediated by an RNA chaperone called Hfq. The functional role of bacterial and eukaryotic Lsm proteins is partially understood, whereas knowledge about archaeal Lsm proteins is scarce. Here, we used the genetically tractable archaeal hyperthermophile Pyrococcus furiosus to identify the protein interaction partners of the archaeal Sm-like proteins (PfuSmAP1) using mass spectrometry and performed a transcriptome-wide binding site analysis of PfuSmAP1. Most of the protein interaction partners we found are part of the RNA homoeostasis network in Archaea including ribosomal proteins, the exosome, RNA-modifying enzymes, but also RNA polymerase subunits, and transcription factors. We show that PfuSmAP1 preferentially binds messenger RNAs and antisense RNAs recognizing a gapped poly(U) sequence with high affinity. Furthermore, we found that SmAP1 co-transcriptionally associates with target RNAs. Our study reveals that in contrast to bacterial Hfq, PfuSmAP1 does not affect the transcriptional activity or the pausing behaviour of archaeal RNA polymerases. We propose that PfuSmAP1 recruits antisense RNAs to target mRNAs and thereby executes its putative regulatory function on the posttranscriptional level.


Assuntos
Proteínas Arqueais , Pyrococcus furiosus , Pequeno RNA não Traduzido , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , RNA Mensageiro/metabolismo , RNA Arqueal/genética , RNA Arqueal/química , RNA Arqueal/metabolismo , Sítios de Ligação , Bactérias/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Pequeno RNA não Traduzido/metabolismo
4.
Methods Mol Biol ; 2646: 183-195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36842116

RESUMO

Swimming archaea are propelled by a filamentous structure called the archaellum. The first step for the structural characterization of this filament is its isolation. Here we provide various methods that allow for the isolation of archaella filaments from well-studied archaeal model organisms. Archaella filaments have been successfully extracted from organisms belonging to different archaeal phyla, e.g., euryarchaeal methanogens such as Methanococcus voltae, and crenarchaeal hyperthermoacidophiles like Sulfolobus acidocaldarius. The filament isolation protocols that we provide in this chapter follow one of two strategies: either the filaments are sheared or extracted from whole cells by detergent extraction, prior to further final purification by centrifugation methods.


Assuntos
Proteínas Arqueais , Citoesqueleto , Estruturas da Membrana Celular , Proteínas Arqueais/química
5.
Mol Biol Evol ; 39(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36256608

RESUMO

Type II DNA topoisomerases regulate topology by double-stranded DNA cleavage and ligation. The TopoVI family of DNA topoisomerase, first identified and biochemically characterized in Archaea, represents, with TopoVIII and mini-A, the type IIB family. TopoVI has several intriguing features in terms of function and evolution. TopoVI has been identified in some eukaryotes, and a global view is lacking to understand its evolutionary pattern. In addition, in eukaryotes, the two TopoVI subunits (TopoVIA and TopoVIB) have been duplicated and have evolved to give rise to Spo11 and TopoVIBL, forming TopoVI-like (TopoVIL), a complex essential for generating DNA breaks that initiate homologous recombination during meiosis. TopoVIL is essential for sexual reproduction. How the TopoVI subunits have evolved to ensure this meiotic function is unclear. Here, we investigated the phylogenetic conservation of TopoVI and TopoVIL. We demonstrate that BIN4 and RHL1, potentially interacting with TopoVIB, have co-evolved with TopoVI. Based on model structures, this observation supports the hypothesis for a role of TopoVI in decatenation of replicated chromatids and predicts that in eukaryotes the TopoVI catalytic complex includes BIN4 and RHL1. For TopoVIL, the phylogenetic analysis of Spo11, which is highly conserved among Eukarya, highlighted a eukaryal-specific N-terminal domain that may be important for its regulation. Conversely, TopoVIBL was poorly conserved, giving rise to ATP hydrolysis-mutated or -truncated protein variants, or was undetected in some species. This remarkable plasticity of TopoVIBL provides important information for the activity and function of TopoVIL during meiosis.


Assuntos
Proteínas Arqueais , DNA Topoisomerases Tipo II , Filogenia , Sequência de Aminoácidos , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Proteínas Arqueais/química , Meiose/genética , Eucariotos/genética , Eucariotos/metabolismo
6.
Methods Mol Biol ; 2516: 81-102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35922623

RESUMO

Archaeal transcription and its regulation are characterized by a mosaic of eukaryotic and bacterial features. Molecular analysis of the functioning of the archaeal RNA polymerase, basal transcription factors, and specific promoter-containing DNA templates allows to unravel the mechanisms of transcription regulation in archaea. In vitro transcription is a technique that allows the study of this process in a simplified and controlled environment less complex than the archaeal cell. In this chapter, we present an in vitro transcription methodology for the study of transcription in Sulfolobales. It is described how to purify the RNA polymerase and the basal transcription factors TATA-binding protein and transcription factor B of Saccharolobus solfataricus and how to perform in vitro transcription reactions and transcript detection. Application of this protocol for other archaeal species could require minor modifications to protein overexpression and purification conditions.


Assuntos
Archaea , Proteínas Arqueais , Archaea/genética , Archaea/metabolismo , Proteínas Arqueais/química , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Sulfolobales/genética , Sulfolobales/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
7.
Proc Natl Acad Sci U S A ; 119(32): e2207581119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917344

RESUMO

Transcription must be properly regulated to ensure dynamic gene expression underlying growth, development, and response to environmental cues. Regulation is imposed throughout the transcription cycle, and while many efforts have detailed the regulation of transcription initiation and early elongation, the termination phase of transcription also plays critical roles in regulating gene expression. Transcription termination can be driven by only a few proteins in each domain of life. Detailing the mechanism(s) employed provides insight into the vulnerabilities of transcription elongation complexes (TECs) that permit regulated termination to control expression of many genes and operons. Here, we describe the biochemical activities and crystal structure of the superfamily 2 helicase Eta, one of two known factors capable of disrupting archaeal transcription elongation complexes. Eta retains a twin-translocase core domain common to all superfamily 2 helicases and a well-conserved C terminus wherein individual amino acid substitutions can critically abrogate termination activities. Eta variants that perturb ATPase, helicase, single-stranded DNA and double-stranded DNA translocase and termination activities identify key regions of the C terminus of Eta that, when combined with modeling Eta-TEC interactions, provide a structural model of Eta-mediated termination guided in part by structures of Mfd and the bacterial TEC. The susceptibility of TECs to disruption by termination factors that target the upstream surface of RNA polymerase and potentially drive termination through forward translocation and allosteric mechanisms that favor opening of the clamp to release the encapsulated nucleic acids emerges as a common feature of transcription termination mechanisms.


Assuntos
Proteínas Arqueais , DNA Helicases , Thermococcus , Fatores de Transcrição , Terminação da Transcrição Genética , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Cristalografia , DNA Helicases/química , DNA Helicases/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Domínios Proteicos , Thermococcus/enzimologia , Thermococcus/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
8.
Science ; 377(6607): eabm4096, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35951700

RESUMO

Many organisms have evolved specialized immune pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs) of the STAND superfamily that are ubiquitous in plants, animals, and fungi. Although the roles of NLRs in eukaryotic immunity are well established, it is unknown whether prokaryotes use similar defense mechanisms. Here, we show that antiviral STAND (Avs) homologs in bacteria and archaea detect hallmark viral proteins, triggering Avs tetramerization and the activation of diverse N-terminal effector domains, including DNA endonucleases, to abrogate infection. Cryo-electron microscopy reveals that Avs sensor domains recognize conserved folds, active-site residues, and enzyme ligands, allowing a single Avs receptor to detect a wide variety of viruses. These findings extend the paradigm of pattern recognition of pathogen-specific proteins across all three domains of life.


Assuntos
Archaea , Proteínas Arqueais , Bactérias , Proteínas de Bactérias , Imunidade Inata , Proteínas NLR , Receptores de Reconhecimento de Padrão , Proteínas Virais , Animais , Archaea/imunologia , Archaea/virologia , Proteínas Arqueais/química , Proteínas Arqueais/classificação , Proteínas Arqueais/genética , Bactérias/imunologia , Bactérias/virologia , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Bacteriófagos , Microscopia Crioeletrônica , Proteínas NLR/química , Proteínas NLR/genética , Filogenia , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/classificação , Receptores de Reconhecimento de Padrão/genética , Proteínas Virais/química , Proteínas Virais/genética
9.
Nature ; 609(7925): 197-203, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35882349

RESUMO

Archaea synthesize isoprenoid-based ether-linked membrane lipids, which enable them to withstand extreme environmental conditions, such as high temperatures, high salinity, and low or high pH values1-5. In some archaea, such as Methanocaldococcus jannaschii, these lipids are further modified by forming carbon-carbon bonds between the termini of two lipid tails within one glycerophospholipid to generate the macrocyclic archaeol or forming two carbon-carbon bonds between the termini of two lipid tails from two glycerophospholipids to generate the macrocycle glycerol dibiphytanyl glycerol tetraether (GDGT)1,2. GDGT contains two 40-carbon lipid chains (biphytanyl chains) that span both leaflets of the membrane, providing enhanced stability to extreme conditions. How these specialized lipids are formed has puzzled scientists for decades. The reaction necessitates the coupling of two completely inert sp3-hybridized carbon centres, which, to our knowledge, has not been observed in nature. Here we show that the gene product of mj0619 from M. jannaschii, which encodes a radical S-adenosylmethionine enzyme, is responsible for biphytanyl chain formation during synthesis of both the macrocyclic archaeol and GDGT membrane lipids6. Structures of the enzyme show the presence of four metallocofactors: three [Fe4S4] clusters and one mononuclear rubredoxin-like iron ion. In vitro mechanistic studies show that Csp3-Csp3 bond formation takes place on fully saturated archaeal lipid substrates and involves an intermediate bond between the substrate carbon and a sulfur of one of the [Fe4S4] clusters. Our results not only establish the biosynthetic route for tetraether formation but also improve the use of GDGT in GDGT-based paleoclimatology indices7-10.


Assuntos
Proteínas Arqueais , Éteres de Glicerila , Lipídeos de Membrana , Methanocaldococcus , Proteínas Arqueais/química , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/metabolismo , Carbono/química , Carbono/metabolismo , Glicerol/química , Glicerol/metabolismo , Éteres de Glicerila/química , Éteres de Glicerila/metabolismo , Lipídeos de Membrana/biossíntese , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Methanocaldococcus/química , Methanocaldococcus/enzimologia , Methanocaldococcus/metabolismo , S-Adenosilmetionina/metabolismo , Terpenos/química , Terpenos/metabolismo
10.
Structure ; 30(9): 1298-1306.e3, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841886

RESUMO

DNA end resection mediated by the coordinated action of nuclease and helicase is a crucial step in initiating homologous recombination. The end-resection apparatus NurA nuclease and HerA helicase are present in both archaea and bacteria. Here, we report the cryo-electron microscopy structure of a bacterial HerA-NurA complex from Deinococcus radiodurans. The structure reveals a barrel-like hexameric HerA and a distinctive NurA dimer subcomplex, which has a unique extended N-terminal region (ENR) involved in bacterial NurA dimerization and activation. In addition to the long protruding linking loop and the C-terminal α helix of NurA, the flexible ENR is close to the HerA-NurA interface and divides the central channel of the DrNurA dimer into two halves, suggesting a possible mechanism of DNA end processing. In summary, this work provides new insights into the structure, assembly, and activation mechanisms of bacterial DNA end resection mediated by a minimal end-resection apparatus.


Assuntos
Proteínas Arqueais , Proteínas Arqueais/química , Bactérias/metabolismo , Microscopia Crioeletrônica , DNA , DNA Helicases/química , Reparo do DNA , Modelos Moleculares
11.
Proc Natl Acad Sci U S A ; 119(26): e2207037119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727984

RESUMO

While biofilms formed by bacteria have received great attention due to their importance in pathogenesis, much less research has been focused on the biofilms formed by archaea. It has been known that extracellular filaments in archaea, such as type IV pili, hami, and cannulae, play a part in the formation of archaeal biofilms. We have used cryo-electron microscopy to determine the atomic structure of a previously uncharacterized class of archaeal surface filaments from hyperthermophilic Pyrobaculum calidifontis. These filaments, which we call archaeal bundling pili (ABP), assemble into highly ordered bipolar bundles. The bipolar nature of these bundles most likely arises from the association of filaments from at least two different cells. The component protein, AbpA, shows homology, both at the sequence and structural level, to the bacterial protein TasA, a major component of the extracellular matrix in bacterial biofilms, contributing to biofilm stability. We show that AbpA forms very stable filaments in a manner similar to the donor-strand exchange of bacterial TasA fibers and chaperone-usher pathway pili where a ß-strand from one subunit is incorporated into a ß-sheet of the next subunit. Our results reveal likely mechanistic similarities and evolutionary connection between bacterial and archaeal biofilms, and suggest that there could be many other archaeal surface filaments that are as yet uncharacterized.


Assuntos
Proteínas Arqueais , Biofilmes , Fímbrias Bacterianas , Pyrobaculum , Proteínas Arqueais/química , Microscopia Crioeletrônica , Fímbrias Bacterianas/química , Conformação Proteica em Folha beta , Pyrobaculum/química , Pyrobaculum/fisiologia
12.
Int J Biol Macromol ; 214: 381-390, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35728637

RESUMO

Studies on the structure-function relationship of protein greatly help to understand not only the principles of protein folding but also the rationales of protein engineering. Crenarchaeal chromatin protein Cren7 provides an excellent research model for this issue. The small protein adopts a 'ß-barrel' fold, formed by the double-stranded antiparallel ß-sheet 1 tightly packing with the triple-stranded antiparallel ß-sheet 2. The simple structure of Cren7 is stabilized by the hydrophobic core between the ß-sheets, consisting of the side chains of V8, V10, L20, V25, F41 and F50. In the present work, mutation analyses by alanine substitution of each of the residues in the hydrophobic core were performed. Circular dichroism spectra and nuclear magnetic resonance analyses showed that mutation of F41 led to a significant misfolding of Cren7 through disruption of the ß-sheets. Meanwhile, the mutant F41A showed a reduced thermostatility (Tm of 53.2 °C), as compared with the wild-type Cren7 (Tm > 80 °C). Biolayer interferometry and nick-closure assays showed the largely unchanged activities in DNA binding and supercoiling of F41A, indicating the DNA interface of Cren7 was generally retained in F41A. However, F41A was unable to mediate DNA bridging, probably due to the impairment in forming oligomers/polymers on DNA. Atomic force microscopic images of the F41A-DNA complexes also revealed that F41A nearly completely lost the ability to compact DNA into highly condensed structures. Our results not only reveal the critical role of F41 in protein folding of Cren7 but also provide new insights into the structure-function relationships of thermostable proteins.


Assuntos
Archaea , Proteínas Arqueais , Archaea/metabolismo , Proteínas Arqueais/química , Cromatina , DNA/química , Proteínas de Ligação a DNA/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Dobramento de Proteína
13.
BMC Bioinformatics ; 23(1): 171, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538405

RESUMO

BACKGROUND: Archaea are a vast and unexplored domain. Bioinformatic techniques might enlighten the path to a higher quality genome annotation in varied organisms. Promoter sequences of archaea have the action of a plethora of proteins upon it. The conservation found in a structural level of the binding site of proteins such as TBP, TFB, and TFE aids RNAP-DNA stabilization and makes the archaeal promoter prone to be explored by statistical and machine learning techniques. RESULTS AND DISCUSSIONS: In this study, experimentally verified promoter sequences of the organisms Haloferax volcanii, Sulfolobus solfataricus, and Thermococcus kodakarensis were converted into DNA duplex stability attributes (i.e. numerical variables) and were classified through Artificial Neural Networks and an in-house statistical method of classification, being tested with three forms of controls. The recognition of these promoters enabled its use to validate unannotated promoter sequences in other organisms. As a result, the binding site of basal transcription factors was located through a DNA duplex stability codification. Additionally, the classification presented satisfactory results (above 90%) among varied levels of control. CONCLUDING REMARKS: The classification models were employed to perform genomic annotation into the archaea Aciduliprofundum boonei and Thermofilum pendens, from which potential promoters have been identified and uploaded into public repositories.


Assuntos
Archaea , Proteínas Arqueais , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Aprendizado de Máquina , Regiões Promotoras Genéticas , Transcrição Gênica
14.
Adv Biol (Weinh) ; 6(7): e2101323, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35429148

RESUMO

The emergence of the first eukaryotic cell is preceded by evolutionary events, which are still highly debatable. Clues of the exact sequence of events are beginning to emerge. Recent metagenomics analyses has uncovered the Asgard super-phylum as the closest yet known archaea host of eukaryotes. Some of these have been tested and confirmed experimentally. However, the bulk of eukaryotic signature proteins predicted to be encoded by the Asgard super-phylum have not been studied, and their true functions, at least in the context of a eukaryotic cell, are still elusive. For example, there are several different variants of the profilin within each Asgardian Achaea, and there are some conflicting results of their actual roles. Here, the 3D structure of profilin from Thorarchaeota is determined by nuclear magnetic resonance spectroscopy and shows that this profilin has a eukaryotic-like profilin with a rigid core and an extended N-terminus previously implicated in polyproline binding. In addition, it is also shown that Thorarchaeota Profilin co-localizes with eukaryotic actin in cultured HeLa cells. This finding reaffirms the notion that Asgardian encoded proteins possess eukaryotic-like characteristics and strengthen the likely existence of a complex cytoskeleton already in a last eukaryotic common ancestor.


Assuntos
Archaea , Proteínas Arqueais , Profilinas , Archaea/química , Proteínas Arqueais/química , Eucariotos , Genoma Arqueal , Células HeLa , Humanos , Profilinas/química
15.
Int J Biol Macromol ; 209(Pt A): 1410-1421, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35472364

RESUMO

This manuscript describes recombinant production, characterization and structural analysis of wild-type and mutant Pcal_0029, a pyruvate kinase from Pyrobaculum calidifontis. Recombinant Pcal_0029 was produced in soluble and highly active form in Escherichia coli. Purified protein exhibited divalent metal-dependent activity which increased with the increase in temperature till 85 °C. Recombinant Pcal_0029 was highly thermostable with no significant loss in activity even after an incubation of 120 min at 100 °C. The enzyme exhibited apparent S0.5 and Vmax values of 0.44 ± 0.05 mM and 840 ± 39 units, respectively, towards phosphoenolpyruvate. These values towards adenosine-5'-diphosphate were 0.5 ± 0.07 mM and 870 ± 26 units, respectively. In silico structural analysis and comparison with the characterized enzymes revealed the presence of eight conserved regions. Two substitutions, K130E and S155G, resulted in a 10-fold decrease in activity. Secondary structure analysis indicated similar structures for the wild-type and the mutant enzymes. Bioinformatics analysis revealed disruption of interatomic interactions and hydrogen bonds, leading to a decreased flexibility and solvent accessibility, which may have led to decrease in activity. To the best of our knowledge, Pcal_0029 is the most thermostable pyruvate kinase reported so far. Moreover, this is the first study on the role of non-catalytic residues in a pyruvate kinase.


Assuntos
Proteínas Arqueais , Pyrobaculum , Proteínas Arqueais/química , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Pyrobaculum/genética , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(10): e2110415119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238638

RESUMO

SignificanceAmino acids are the building blocks of life and important signaling molecules. Despite their common structure, no universal mechanism for amino acid recognition by cellular receptors is currently known. We discovered a simple motif, which binds amino acids in various receptor proteins from all major life-forms. In humans, this motif is found in subunits of calcium channels that are implicated in pain and neurodevelopmental disorders. Our findings suggest that γ-aminobutyric acid-derived drugs bind to the same motif in human proteins that binds natural ligands in bacterial receptors, thus enabling future improvement of important drugs.


Assuntos
Archaea/química , Proteínas Arqueais/química , Bactérias/química , Proteínas de Bactérias/química , Proteínas de Membrana/química , Motivos de Aminoácidos , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Humanos , Proteínas de Membrana/metabolismo
17.
Nat Commun ; 13(1): 710, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132062

RESUMO

Archaea use a molecular machine, called the archaellum, to swim. The archaellum consists of an ATP-powered intracellular motor that drives the rotation of an extracellular filament composed of multiple copies of proteins named archaellins. In many species, several archaellin homologs are encoded in the same operon; however, previous structural studies indicated that archaellum filaments mainly consist of only one protein species. Here, we use electron cryo-microscopy to elucidate the structure of the archaellum from Methanocaldococcus villosus at 3.08 Å resolution. The filament is composed of two alternating archaellins, suggesting that the architecture and assembly of archaella is more complex than previously thought. Moreover, we identify structural elements that may contribute to the filament's flexibility.


Assuntos
Flagelos/química , Methanocaldococcus/química , Proteínas Arqueais/química , Sítios de Ligação , Microscopia Crioeletrônica , Flagelos/fisiologia , Flagelina/química , Glicosilação , Metais/química , Methanocaldococcus/fisiologia , Modelos Moleculares , Multimerização Proteica , Subunidades Proteicas
18.
Nature ; 602(7896): 336-342, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110733

RESUMO

By catalysing the microbial formation of methane, methyl-coenzyme M reductase has a central role in the global levels of this greenhouse gas1,2. The activity of methyl-coenzyme M reductase is profoundly affected by several unique post-translational modifications3-6, such as  a unique C-methylation reaction catalysed by methanogenesis marker protein 10 (Mmp10), a radical S-adenosyl-L-methionine (SAM) enzyme7,8. Here we report the spectroscopic investigation and atomic resolution structure of Mmp10 from Methanosarcina acetivorans, a unique B12 (cobalamin)-dependent radical SAM enzyme9. The structure of Mmp10 reveals a unique enzyme architecture with four metallic centres and critical structural features involved in the control of catalysis. In addition, the structure of the enzyme-substrate complex offers a glimpse into a B12-dependent radical SAM enzyme in a precatalytic state. By combining electron paramagnetic resonance spectroscopy, structural biology and biochemistry, our study illuminates the mechanism by which the emerging superfamily of B12-dependent radical SAM enzymes catalyse chemically challenging alkylation reactions and identifies distinctive active site rearrangements to provide a structural rationale for the dual use of the SAM cofactor for radical and nucleophilic chemistry.


Assuntos
Proteínas Arqueais , Methanosarcina , S-Adenosilmetionina , Proteínas Arqueais/química , Espectroscopia de Ressonância de Spin Eletrônica , Methanosarcina/enzimologia , Metilação , Conformação Proteica , Processamento de Proteína Pós-Traducional , S-Adenosilmetionina/química , Vitamina B 12
19.
Elife ; 112022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076393

RESUMO

DNA topoisomerase VI (topo VI) is a type IIB DNA topoisomerase found predominantly in archaea and some bacteria, but also in plants and algae. Since its discovery, topo VI has been proposed to be a DNA decatenase; however, robust evidence and a mechanism for its preferential decatenation activity was lacking. Using single-molecule magnetic tweezers measurements and supporting ensemble biochemistry, we demonstrate that Methanosarcina mazei topo VI preferentially unlinks, or decatenates DNA crossings, in comparison to relaxing supercoils, through a preference for certain DNA crossing geometries. In addition, topo VI demonstrates a significant increase in ATPase activity, DNA binding and rate of strand passage, with increasing DNA writhe, providing further evidence that topo VI is a DNA crossing sensor. Our study strongly suggests that topo VI has evolved an intrinsic preference for the unknotting and decatenation of interlinked chromosomes by sensing and preferentially unlinking DNA crossings with geometries close to 90°.


Assuntos
Proteínas Arqueais , DNA Topoisomerases Tipo II , DNA Catenado , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , DNA Catenado/química , DNA Catenado/genética , DNA Catenado/metabolismo , Methanosarcina/enzimologia , Imagem Individual de Molécula , Estereoisomerismo
20.
J Bacteriol ; 204(1): e0035321, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34748388

RESUMO

Small proteins of up to ∼50 amino acids are an abundant class of biomolecules across all domains of life. Yet due to the challenges inherent in their size, they are often missed in genome annotations, and are difficult to identify and characterize using standard experimental approaches. Consequently, we still know few small proteins even in well-studied prokaryotic model organisms. Mass spectrometry (MS) has great potential for the discovery, validation, and functional characterization of small proteins. However, standard MS approaches are poorly suited to the identification of both known and novel small proteins due to limitations at each step of a typical proteomics workflow, i.e., sample preparation, protease digestion, liquid chromatography, MS data acquisition, and data analysis. Here, we outline the major MS-based workflows and bioinformatic pipelines used for small protein discovery and validation. Special emphasis is placed on highlighting the adjustments required to improve detection and data quality for small proteins. We discuss both the unbiased detection of small proteins and the targeted analysis of small proteins of interest. Finally, we provide guidelines to prioritize novel small proteins, and an outlook on methods with particular potential to further improve comprehensive discovery and characterization of small proteins.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Espectrometria de Massas/métodos , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/genética , Proteínas de Bactérias/genética , Biologia Computacional , Regulação da Expressão Gênica em Archaea/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...